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From a PHMSA notice of proposed rulemaking:

PHMSA proposes to clarify the risk assessment aspects of the IM rule to 
explicitly articulate functional requirements and to assure that risk 
assessments are adequate to: (1) evaluate the effects of interacting 
threats, (2) determine intervals for continual integrity reassessments, (3) 
determine additional preventive and mitigative measures needed, (4) 
analyze how a potential failure could affect HCAs, including the 
consequences of the entire worst-case incident scenario from initial 
failure to incident termination, (5) identify the contribution to risk of each 
risk factor, or each unique combination of risk factors that interact or 
simultaneously contribute to risk at a common location, (6) account and 
compensate for uncertainties in the model and the data used in the risk 
assessment, and (7) evaluate predicted risk reduction associated with 
preventive and mitigative measures. 
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From a notice of proposed rulemaking 
(continued):

While PHMSA does not propose to prescribe the specific risk 
assessment model operators must use, PHMSA does propose to clarify 
the characteristics of a mature risk assessment program. These include: 
(1) identifying risk drivers; (2) evaluating interactive threats; (3) assuring 
the use of traceable and verifiable information and data; (4) accounting 
for uncertainties in the risk model and the data used; (5) 
incorporating a root cause analysis of past incidents; (6) validating 
the risk model in light of incident, leak and failure history and other 
historical information; (7) using the risk assessment to establish criteria 
for acceptable risk levels; and (8) determining what additional preventive 
and mitigative measures are needed to achieve risk reduction goals. 
PHMSA proposes to clarify that the risk assessment method selected by 
the operator must be capable of successfully performing these functions. 
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Purpose

• Of the RMWG: 

– To characterize the state of the art of pipeline risk modeling, …, 
Identify a range of state of the art methods & tools …, provide 
recommendations to PHMSA regarding the use of these methods, 
tools, and data requirements.

• Of this talk:

– To help the RMWG do that, in the area of Bayesian analysis of 
operating experience data, in light of the PHMSA needs quoted 
above
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Outline

• Selected highlights of “Decisions Under Uncertainty”

– World War II: Scramble, or not? 

– False positives / false negatives

– Value of Information

• Bayesian Analysis

– What does it do?

– Ways to go wrong with it: Hypothesis space, priors, “likelihood” 
models

• ESP example

• Data example

• Selected highlights of how NRC and industry handle data on nuclear 
power plants

– What sorts of decisions are supported, and how
8
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Theme: Dealing with uncertainty 
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A Fundamental Practical Problem

• We need to decide whether to mitigate an adverse condition (hazard, disease, 
performance issue)

• Different versions of the problem: either 

– we are not sure whether the condition exists, and we are dealing with Prob (it 
exists); or

– Adverse consequences occur with probability p, but we are not sure about the value 
of p

• We have some information, but it does not completely determine the “state of 
nature”

• Being wrong in the assessment has significant adverse consequences

• Questions:

– What is the best decision we can make, given the information we have? 

– How much would more definitive information be worth?

– Should we expend the time and resources to get that information before choosing 
whether to mitigate?
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Next slides 

• Discuss Two-alternative model (To mitigate, or not to mitigate)
– Each alternative has different possible outcomes

– Probabilities and Consequences are given

– Show the “Decision Tree”

– Discuss pros and cons of the two possible decisions

• Illustrate “value of information:”
– what it could be worth to obtain evidence that will make the decision more obvious 

by reducing uncertainties

– Expand the decision tree to reflect not only the choice among the original 
alternatives, but also the decision whether to gather more information
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Simple Version of the Problem

• A hazard (potential for adverse consequences) has been identified

• Steps could be taken to deal with the hazard

• Need to decide whether to take the steps (implement the system, …)

• Given: 
– Probability of scenario leading to adverse consequences

– Consequences (in monetary units) conditional on that scenario

– Cost (in monetary units) and effectiveness of the mitigating system

• Pros and Cons:
– Taking steps largely mitigates the hazard, but costs money

– Not taking steps saves the cost of mitigation, but may incur the adverse 
consequences
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Stakes Associated with Incorrect Diagnoses

Enemy Aircraft 
Detection

False positive: scramble for no reason

False negative: fail to defend against attack

Medical Diagnosis (or 

Non-Destructive 

Evaluation)

False positive: treat for disease (or replace component), 

unnecessarily incurring costs and side effects (or rejecting a 

“good” item)

False negative: leave disease untreated (leave flawed component 

in place)

Terminology:
 False positive: conclusion that adverse condition is present, when it is not

 False negative: conclusion that adverse condition is not present, when it is

Context Consequences of False Indications 

Adding a mitigating 
system

False positive: Incur cost

False negative: Experience unmitigated consequences
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States & Outcomes of Mitigation Decision

Yes

No

-Expense State 

Probability

-Conditional 

Loss

- c

- c

0

0

p

p

1-p

1-p 0

0

-x

-ex

e >0 but << 1 is introduced to allow for the possibility 

that mitigation is not perfect.

p is the probability of 

the adverse condition 

being present, or the 

hazard occurring

c > 0  is the cost of mitigation

x is the (monetized) cost resulting from the hazardous 

event without mitigation

Decision: 

Mitigate or 

Not

Mitigate? Adverse 

Condition 

Present?  

Yes

Yes

No

No
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Decision based on expected consequences

• Expected consequences of “spend” (take the steps, mitigate, …) 
decision:

– Certain expenditure of “c”, experience consequences ex with probability p

– -p*(-c-ex)+(1- p)*(-c) = -c-pex

• Expected consequences of “don’t spend” decision:

– Avoid cost “c” of mitigating system, but experience consequences x with 
probability p

– p *(-x)

• Decide to “spend” when 

– [(-c- p ex)]-[p *(-x)] > 0 ,  or p x(1-e)>c

– That is, spend to mitigate when expected reduction in damages,   (p x(1-
e)), exceeds cost c of mitigation

– Note: this simple formalism contemplates monetization of consequences, 
but does not address broader issues of utility such as risk aversion. 
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What would it be worth to eliminate uncertainty?

• In the example, the hazard is not known to exist: it has probability p

• We will improve the expected consequences of our decision if we 
KNOW whether the hazard is present

• Suppose c, e, x are such that mitigation is well worth while if the hazard 
is definitely present. Then:

– If we know the hazard is present, we will spend to mitigate it

– If we know the hazard is not present, we will save the money

• The Value of Perfect Information is the difference between 
– the expected consequences conditional on knowing, and 

– the expected consequences conditional on the current state of knowledge 
(uncertainty)

VOPI = <U>no uncertainty - <U>uncertainty
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Value of Information (VOI) for this example

• Expected consequences conditional on knowing:
p*{consequences of best decision conditional on hazard being present} + 

(1- p)*{consequences of best decision conditional on hazard NOT being present}

• This is p *(-c-ex) + (1- p)*0, or p *(-c-ex)

• Suppose the best decision under uncertainty is to “spend” (but there is some 
probability that we are wasting money)

– Then the VOI is 
 p *(-c-ex) – [-c-pex] = c(1-p)  

• Amount wasted if no need, times the probability of no need

• Suppose the best decision under uncertainty is not to spend (but we may 
suffer unmitigated adverse consequences)

– Then the VOI is 
 p (-c-ex)-[p(-x)] or p[x(1-e)-c] 

• Difference in damages that it would have made to spend, if hazard is present, times the 
probability that the hazard is present

• If the cost of mitigation exceeds the conditional consequences, the best 
decision is not to spend. Then the information has no value in this decision –
VOPI = 0 - because information cannot change the decision (not to spend)
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Gather [“perfect”] Information, Or Not?

Yes

-Expense State 

Probability

-Conditional 

Loss

- c(M)

- c(M)

0

0

p

p

1-p

1-p 0

0

-x

-ex

Mitigate at 

cost c(M)? 

Adverse 

Condition 

Present?  

Gather 

(“perfect”) Info at 

cost c(I)?

No
Yes

Yes

No

No
No

Yes

Adverse 

Condition 

Present?  

Mitigate? 

Yes Yes - c(M)-c(I) p

1-p 0

-ex

No No -c(I)

-Expense State 

Probability

-Conditional 

Loss

Note 

Reordered 

headings
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Example: Best to Get Information
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Example: Best just to mitigate
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Example: Mitigation Costs > Consequences

Don’t 
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Get info, then 
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Consequences x = $9E5
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Information cannot 

change the decision;

VOPI=0
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Summary of Two-State Example

• Caveats:

– This example is based on minimizing monetary losses

– There is no consideration of risk tolerance, or utility other than 
monetary loss

• Uncertainty can limit the expected utility associated with a given 
decision situation

• Analysis can show how much it is potentially worth to reduce 
uncertainty

• In such a case, the uncertainty has a financial implication

21

The “value of perfect information” example just shows 

what it could be worth to reduce uncertainty. So: we’ve 

done a real-world measurement, and have some information 

(not perfect information). 

Now what? 

=>Bayesian analysis.



“Aleatory” vs. “Epistemic”

• Epistemic: State of knowledge uncertainty

• Aleatory: Variability from one trial to the next

• Example of Aleatory uncertainty:

– We know Mean Time Between Failures (MTBF) for a component 
type, but we don’t know when any specific component of that type 
will fail

• Example of Epistemic uncertainty:

– We DON’T know MTBF

• In general, in this talk, we are talking about epistemic uncertainty: 
uncertainty in a model parameter

– Could be reliability models (failure rates, failure probabilities, 
equipment availabilities)

– Could be physical model parameters (toughness, corrosion rates, 
…)
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What does Bayesian analysis do?

• It shows us how to incorporate newly acquired evidence into our 
current state of knowledge regarding some parameter. Examples:

– What does recent operating experience tell us about the failure 
rates of components in our system?

• We thought the compressor failure rate was l, but based on 
that, we should have had only n failures; and instead we’ve 
had m>n failures.

– What do recent test results tell us about the parameters of physical 
models, or even the applicability of those models to our situation?
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Bayes’ Theorem: 

• Bayes’ “theorem” states that 

• where 

– Hi represents a hypothesis whose probability is to be 
updated with new evidence,

– p(Hi ) is the prior probability of Hi,

– E represents a new piece of evidence, 

– p(x|y) is the conditional probability of x given y,

– p(E), the prior probability of the observed evidence

p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å
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Bayes’ Theorem: 

• Bayes’ “theorem” states that 

• where 

– Hi represents a hypothesis whose probability is to be 
updated with new evidence,

– p(Hi ) is the prior probability of Hi,

– E represents a new piece of evidence, 

– p(x|y) is the conditional probability of x given y,

– p(E), the prior probability of the observed evidence

p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å

What we 

think now

What we 

used to 

think

Factor measuring the 

consistency of the 

observed evidence E with 

the various competing 

hypotheses Hi
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Application of Bayes’ Theorem: 
Gorillas in the room

• Structure of the hypothesis space: what ARE the {H}?

– As in the “ESP example” (later slides)

– Other examples abound

• Selection (formulation) of the prior p(H)

– Has a huge effect on the results

– Still a research topic

• Modeling of the likelihood p(E|Hi)

– If you’re comparing a model to data, then this includes all sorts of 
things 

• Model form uncertainty

• Selection of data (E): which data apply?
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Really only one gorilla

• Bayes’ “theorem” states that 

• Everything on the right-hand side includes modeling choices made by 
the user

• So the “theorem” is an identity, but you can still go very wrong

• We have met the enemy, and he is us

p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å
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Structure of the hypothesis space
(Probability Theory: The Logic of Science, E. T. Jaynes)

• Consider an experiment to determine whether an individual has 
extrasensory perception (ESP)

– Experiment involves seeing whether individual can sense 
which of several possible cards is held

• It’s possible to guess correctly sometimes, but (barring ESP) 
EXTREMELY unlikely to guess correctly a large fraction of the 
time

• Consider two hypotheses: yes (ESP) and no (no ESP)

• Establish prior probabilities for these two hypotheses

• The data come in. The individual gets everything right. You 
update your prior with data, and it looks like the individual has 
ESP.

• What do you conclude?
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Brief Digression on odds ratio

• Interesting to focus on the ratios

• Write Bayes’ formula for each 

hypothesis; 

• divide one by the other.

p Yes |E( ) = P Yes( )
p(E |Yes)

p(E)
,

p No | E( ) = P No( )
p(E | No)

p(E)
,

p(Yes |E)

p(No | E)
=
p(Yes)

p(No)
*
p(E |Yes)

p(E | No)
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Brief Digression on odds ratio

• The factor on the right can be meaningfully discussed, independently 
of the prior

• Expert can say “probability of E (this DNA result) given “Yes”
(e.g., that the accused is guilty) is 10000 times the probability of this 
DNA result given “No” (that the accused is innocent).” 

• Just involves fingerprint technology and the chain of evidence, no 
knowledge of the accused or other evidence.

p(Yes |E)

p(No |E)
=
p(Yes)

p(No)
*
p(E |Yes)

p(E | No)

30

Strength of the Prior Strength of the Evidence



• At this point, Jaynes would admit a third hypothesis: deception

• The answer YOU get may not be the answer Jaynes gets

– But his posterior will assign higher probability to “deception” than to 
ESP

31

Structure of the hypothesis space
(Probability Theory: The Logic of Science, E. T. Jaynes)



1983 NRC Guidance on the prior

• 5.5.2 BAYESIAN ESTIMATION

• The Bayesian approach is similar to the classical approach in that it 
yields "best" point estimates and interval estimates, the intervals 
representing ranges in which, we are confident, the parameter really 
lies. It differs in both practical and philosophical aspects, though. The 
practical distinction is in the incorporation of belief and information 
beyond that contained in the observed data; the philosophical 
distinction lies in assigning a distribution that describes the analyst's 
belief about the values of the parameter. This is the so-called prior 
distribution.

• The prior distribution may reflect a purely subjective notion of 
probability, as in the case of a Bayesian degree-of-belief distribution, or 
any physically caused random variability in the parameter, or some 
combination of both.

32

NUREG/CR-2300 PRA PROCEDURES GUIDE

A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants

Prepared under the auspices of The American Nuclear Society and The Institute of Electrical and Electronics Engineers

Under a Grant from The U.S. Nuclear Regulatory Commission



Regarding use of experts:

• If uncertain parameters have to be estimated, and there is no practical 
alternative to using expert elicitation, consider the Kaplan “expert 
evidence” approach,* as opposed to simply asking experts to estimate 
uncertain parameters directly. Note, however, that the Kaplan idea 
stops at evidence-gathering, leaving the task of formulating a likelihood 
function yet to be done.

• Under some conditions, it may be appropriate to apply the Cooke 
method.

• Note: The Kaplan method was formulated to avoid the earlier practice 
of treating expert opinions as if they were experimental results, which 
can easily lead to controversy. The Cooke method operates within the 
tradition of treating expert opinions analogously to experimental 
results, but does so in an intelligent way within a process that 
evaluates the experts with calibration questions that provide 
reasonably objective performance weights for experts. The Cooke 
method was not the first to weight experts, but it does so within an 
objective, algorithmic process.

33

* Instead of asking them what they think the answer is, you ask them what evidence 

informs their assessment. You pool their evidence, not their answers; and then you 

process that pooled body of evidence using Bayes’ theorem. 



Example from NASA PRA 
Procedures Guide

The data are more consistent 

with higher values of failure 

probability
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“Example 5” Revisited
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Maximum at 5E-4

P(1 in 2000 | failure probability)

Failure probability

p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å



Comments on Example

• The new data are not absolutely inconsistent with the prior (1/2000 
could have been a fluke) but one should ask whether things have 
gotten worse than they were when the prior was formulated

• The Bayesian formalism is robust: it will give you an answer whether or 
not your underlying assumptions are right

– Are all these trials “exchangeable?” Or has something changed 
(gotten worse) since the prior distribution was derived?

• Consider an application to performance assessment. 

– Specifically: Is performance getting worse? (Is unreliability 
increasing?)

– Instead of a relatively narrow prior distribution, consider a sum of 
distributions: one for good performance, and one for bad 
performance.
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UP

DOWN

lgood

mgood

Component Reliability / 

Availability

UP

DOWN

ldegraded

mdegraded

Performance 

Declines

Performance 

Improves

Component Reliability / 

Availability

Failure Rate

Repair Rate

Failure Rate

Repair Rate

State 0:

Good Performance

State 1: 

Degraded Performance

Mixture Priors- 1
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0.00 0.02 0.04 0.06 0.08 0.10

p

0.0

20.0

40.0

60.0

80.0 gmix

ggood

gdegraded

CNIP

Mixture Priors- 2: 
Compare the behavior of two prior distributions, gmix
and the “constrained non-informative prior” (CNIP)

gmix = .99*ggood + .01*gdegraded

Note: gmix contrived to have the 

same mean as CNIP
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failures in 100 demands
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Mixture Priors- 4: Despite having 
the same prior mean, the posterior 
distributions behave very differently
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Posterior E(p) from 
Several Priors
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Maximum Likelihood Est.

E(p) with mixture prior
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• BDj, BLj and BRj are the Birnbaum importance measures for the failure 

modes fail on demand, fail to load, and fail to run respectively,

• URDBC, URLBC, and URRBC are Bayesian corrected plant specific values of 

unreliability for the failure modes fail on demand, fail to load, and fail to 

run respectively, and

• URDBL, URLBL, and URRBL are Baseline values of unreliability for the 

failure modes fail on demand, fail to load, and fail to run respectively.

Calculation of the “Mitigating 

Systems Performance Index” (MSPI) 

Unreliability Index (URI)



NEI 99-02 Rev 6

NUREG-1816 

Appendix M

j indexes failure modes 

for a particular 

component (in this case, 

a diesel generator)
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NRC Site Info on MSPI 

for a particular plant


C

D
F
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Mixture Priors- Vary the prior 
probability of degraded performance

It takes a lot more failures 

to swing the posterior, if the 

prior said “very low 

probability of degraded 

performance!”
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Different Priors, 
Different Decisions! 

44

CNI Logistic-Cauchy Robust Bayes Imprecise Probability

No. failures Green White Green White Green White Green White

5 90.8 -181.6 22.5 -45.0 46.8 -93.6 (44.3, 100) (-200, -88.6)

6 81.4 -162.8 -4.8 9.7 22.0 -44.0 (19.3, 100) (-200, -38.7))

7 67.6 -135.1 -25.5 51.0 -1.4 2.8 (-3.5, 99.9) (-200, 6.9)

8 50.1 -100.2 -37.1 74.3 -19.5 38.9 (-21.5, 99.8) (-200, 43.0)

9 30.6 -61.1 -44.6 89.1 -32.8 65.5 (-34.0, 99.5) (-199, 68.0)

10 11.1 -22.2 -47.7 95.5 -41.9 82.0 (-41.7, 98.9) (-198, 83.5)

11 -6.4 12.7 -49.2 98.4 -45.6 91.3 (-46.1, 97.8) (-196, 92.1)

… … … … … … … … …

21 … … … … … … (-50, 9.2) (-18.4, 100)

22 … … … … … … (-50, -3.1) (6.1, 100)

Which prior to use??



Application of Bayes’ Theorem: 
Gorillas in the room

• Structure of the hypothesis space: what ARE the {H}?

– As in the “ESP example” (later slides)

– Other examples abound

• Selection (formulation) of the prior p(H)

– Has a huge effect on the results

– Still a research topic

• Modeling of the likelihood p(E|Hi)

– If you’re comparing a model to data, then this includes all sorts of 
things 

• Model form uncertainty

• Selection of data (E): which data apply?

45

At this point, we’ve illustrated 
each of the bullet items below



Application of data of different types

• The first example was for reliability (failures and demands)

• But the mixture prior example was, in part, for performance states

• If you can infer something about the performance state from 
inspection, that can be factored into the update as well

• Example on the following slide done assuming a significant false 
indication probability for “inspection” 

– Probability that inspection will conclude “degraded performance” 
even if performance is “good,” and vice versa
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Formalism works for all kinds of 
things…

• Examples so far have stressed applications to reliability (failure rate, 
failure probability) based on evidence from operating experience (or 
“inspection“)

• But the Bayesian formalism works for all kinds of things …

– Subject of course to the caveats previously mentioned

• … Such as parameters in physics models …

– …Even complicated ones

– …Even many-parameter ones

– …Even hard-to-execute models, if you use Markov Chain Monte 
Carlo and model emulators
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Forward vs. Backward 
Uncertainty Quantification (UQ)

Input values of uncertain 

parameters, initial 

conditions, boundary 

conditions, etc…

Given the input 

distributions, what’s the 

uncertainty in the 

prediction?

Forward UQ

Output metrics

How do the output 

distributions compare to 

observational data? 

Experimental data

Given the experimental 

data, what’s the joint 

distribution of the inputs?

49

Backward UQ

Computer 

models
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Train the emulator to 

mimic the code being 

calibrated

Run code cases for parameter 

settings spanning the ranges 

of interest

Use MCMC to set 

emulator parameters 

(given the code runs)

Prior Distributions 

on Code Parameters

Experimental 

Data

MCMC

Emulator

Posterior Distributions 

on Code Parameters

Use the emulator / priors / 

data  to determine code 

parameters by MCMC

Start

Task: Estimate physical model 
parameters, given data
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Fig. 9. IET only calibrated scaled 

posterior histograms

Fig. 8. IET calibrated posterior predictions 

relative to the “pseudo” data.

Complicated thermal-hydraulic model with lots of 
uncertain parameters, “calibrated” with 
experimental data using a Bayesian Markov Chain 
Monte Carlo approach.
The posterior predictions nail the observations.

J.P. YURKO, Uncertainty Quantification in Safety Codes Using a Bayesian 

Approach with Data from Separate and Integral Effect Tests. Dissertation, MIT. 

Cambridge, MA, 2014.



Population Variability

52

Bayesian parameter estimation in probabilistic risk 

assessment 

Nathan O. Siu & Dana L. Kelly 

The general idea: 

Instead of pooling performance 

data from different sources 

(e.g., facilities), as if 

everybody’s performance is the 

same: Develop a distribution 

expressing the variability in 

performance… 

Original idea: Kaplan, S. On a ‘two-stage’ Bayesian procedure for 

determining failure rates. IEEE Transactions on Power Apparatus 

and Systems, 1983, PAS-102, 195–262. 
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The general idea (continued): 

… and use that distribution as a 

prior for the facility of current 

interest… 

And update that prior with the 

data you have for the facility of 

current interest (“E”) to get a 

posterior distribution for the 

facility of current interest
p H i | E( ) = P H i( )

p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å

This approach makes essential use of the idea that it makes 

sense to think in terms of family characteristics: that other 

facilities’ data carry implicit information about your facility.



General Principles:

• Strive to avoid the trap of understating uncertainty.

• Strive to make use of all available information that is legitimately 
applicable to the decision at hand.

• Maintain an essentially fallibilist posture with respect to analysis 
results.

• Be very careful about using the full standard Bayesian approach based 
on formulation and updating of an explicit prior. 

– If there is a lot of objective evidence to bring to bear, apply that 
evidence to a maximally ignorant prior, checking along the way to 
see whether the prior and the evidence are tugging the posterior in 
opposite directions. 

– “A lot of objective evidence” means “sufficient evidence that the 
posterior is reasonably insensitive to choice of prior.” 

– If data and prior are incompatible, …
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Summary

• It’s extremely important to understand the uncertainties and what they 
do to the decision problem

• Bayes’ theorem is a powerful tool for understanding the uncertainty, 
and for helping to figure out what to do in order to reduce it most 
effectively 

– Many problems in this arena might usefully map onto a “value of 
information” framework: what would it be worth to inspect / test / 
this pipeline? 

– That question can be answered within classical decision analysis, 
if you understand your uncertainty.

• A lot of theoretical capability has been developed.

• That capability has to be used with caution, because ...
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p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å

…this stuff is 

all user input
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Risk / Reliability Models / 

PRA / and others

In-flight Anomalies

Non-conformance cases

Failures
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Others

Performance Allocation
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including identification of hazards
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Original version of 

this slide originated 

within NASA’s 

Office of Safety and 

Mission Assurance. 

This version was 

probably oriented to 

accident precursor 

analysis.


